Making Progress against Spinal Cord Injuries

Spinal cord injuries are devastating.  The U.S. experiences approximately 12,000 spinal cord injuries per year in which the injured person survives the initial accident.  For those who survive the initial accident, the road forward is physically arduous, psychologically taxing, and financially burdensome.  A spinal cord injury patient can expect to spend well over a month in hospitals and in-patient rehabilitation (and sometimes considerably longer dependent on the severity of the injury and whether there are concomitant cognitive impairments or other comorbidities).  In addition, the lifetime costs of spinal cord injuries are extensive, having a present day value ranging from $4,540,000 for a 20-year-old patient with high tetraplegia (spinal cord injury at C1-C4) to $1,460,000 for a 60-year-old patient with paraplegia.  The occupational effects are profound, with only 35% of spinal cord injury patients able to achieve a similar pre-injury level of employment 20 years post-injury.  Obviously, the costs to employers and worker’s compensation carriers in work-related spinal cord injury claims are enormous and usually lifelong.  The costs of spinal cord injuries are massive in the liability context as well.  Since the two most common causes of spinal cord injuries are motor vehicle crashes and falls, liability and worker’s compensation claims are relatively common when spinal cord injuries occur. 

Certainly no one did more to raise awareness of spinal cord injuries than Christopher Reeve, who suffered a spinal cord injury causing high tetraplegia (C1-C2) after falling from a horse in 1995.  Periodically high profile athlete suffer spinal cord injuries that thrust the issue back into the national spotlight.   In 2010, Rutgers football player Eric LeGrande sustained a spinal cord injury during a game against army that initially left him paralyzed from the neck down.  In October 1995, Travis Roy was just 11 seconds into his first shift in his first game as a hockey player for Boston University when he crashed head-first into the boards and suffered a spinal cord injury that also paralyzed him from the neck down.  More recently, Olympic swimmer and multiple gold medal-winning swimmer Amy Van Dyken suffered a spinal cord injury away from athletics in June 2014 when she fell off the all-terrain vehicle she was driving and down a 5-7 foot embankment.  The accident injured her spinal cord at T11 and left her paralyzed from the waist down. 

These famous athletes and celebrities periodically remind us of both the risk and devastating consequences of spinal cord injury.  Fortunately, progress is being made in managing the post-injury effects of spinal cord injury.  The most frequently reported-on developments typically involve bionic exoskeletons that help the paralyzed person move their limbs.  However, recently medical researchers have been making strides in using electrical stimulation to allow the injured patient voluntarily move paralyzed limbs.  In recently reported research, external electrodes were placed over 5 patients’ spinal columns who have suffered from paraplegia for at least two years.  The electrodes in combination with the drug buspirone allowed the patients to move their limbs under stimulation, which was not unexpected.  What was remarkable is that the patients retained the ability to move their legs even without electrical stimulation after 4 weeks of treatment.  As lead researcher Prof. V. Reggie Edgerton noted, "The fact that they regained voluntary control so quickly must mean that they had neural connections that were dormant, which we reawakened."  The findings are considered remarkable because the medical and scientific community had accepted that persons with complete paralysis “no longer had any neural connections in the spinal area.;” suggesting that it may be possible to regain motor function without regenerating spinal neurons or using an exoskeleton system.

This research along with the mind-boggling progress that is being made with patient-controlled exoskeleton devices is changing the landscape for spinal cord injury patients.  These developments are welcome news for patients, their families, and society alike.  As noted above, the occupational and medical costs of spinal cord injuries are enormous.  Anything that can return function to patients has the potential to minimize the occupational impact and long-term medical expenses of spinal cord injuries, which is good news for the worker’s compensation and civil liability systems as well.  Spinal cord injuries are among the most costly injuries to everyone involved.  Improving outcomes in spinal cord injuries will benefit an extraordinary number of individual lives and also the institutions set up to absorb the costs.

0 Comments:

log in to comment

Back to Blog
Recent Posts
Archive