Deception and Traumatic Brain Injury

I do beguile the thing I am by seeming otherwise.

-Iago in Othello, II.2.122-3.

Shakespeare’s Othello, while ostensibly about the titular character and his wife, Desdemona, centers on English literature’s most notorious and effective liar, Iago, a character so perplexingly foul as to cause Samuel Taylor Coleridge to describe him as “motiveless malignity,” evil for only evil’s sake.  Since most of us have long since forgotten our high school and college lit classes, a brief recap:  Othello saves Venice from a Genoan invasion and is elevated to general.  He also wins the heart of the Doge’s daughter, Desdemona, and marries her.  Iago ostensibly hates Othello because he passed him over for a promotion to lieutenant.  He hatches a plan to convince Othello that Desdemona is unfaithful, which he successfully executes through a series of lies and half-truths, manipulating the other characters like a puppeteer.  Iago ultimately convinces Othello that Desdemona is unfaithful, whereupon he kills her and commits suicide (the play being, after all, a tragedy).

To Coleridge, the greatest imaginable horror is not the overtly hostile brute, but rather the deceiver.  The reason is that the challenge of the hostile brute, while perhaps significant, is open and obvious.  We know what to expect and can prepare to deal with it.  The deceptive person is exponentially worse because we often have no idea that we are being deceived or that the person is deceptive.  We have no chance to prepare because we have no expectation of malfeasance or misbehavior.  Hence, in the play Othello unwittingly considers Iago to be his truest friend while Iago leads him to his demise. 

Human biology suggests Coleridge was right to fear liars.  We became spectacularly successful because of our ability to cooperate and trust one another.  It is how we went from hunter-gatherers to denizens of today’s massive and massively complex technological society.  Deceit directly assaults our social nature and causes us to question the motives of everyone with whom we interact.  This is particularly harmful for social beings whose existential success depends on cooperation.  As a result, our inherently social nature makes us particularly poor at detecting deception.

Despite the fact that we are not very good lie detectors, we often think that we are. While liars are popularly depicted as either furtive bundles of nerves and sweat or overconfident and suave psychopaths, in truth all persons lie to varying degrees and there is no one personality type that is particularly adept at being deceitful.  Studies generally find that we are poor lie detectors.  We often think that traits like Machiavellianism, psychopathy, or narcissism make a person a more effective liar; however, research finds that persons having these personality traits are neither particularly effective liars nor particularly effective lie detectors.  About the only things we know for sure about lying are that, “the ability to lie well correlates with an ability to better detect deception in others; and the control of response latency difference when lying may be the key to producing successful lies and detecting those lies in others.”  Contrary to media portrayals, liars cannot be stereotyped.  Also, the popular belief that persons lying give off telltale signs of deception is simply untrue.  If a person wants to lie, chances are no one will notice. 

The problem of deceit in traumatic brain injury is particularly vexing since there are limited objective measures available to differentiate between legitimate claims and malingering or symptom magnification.  To give an idea of the scope of the problem, research has demonstrated symptom magnification or malingering likely occurs in about 40% of mild head injury claims.  This presents difficulties for both insurers and legitimately injured claimants.  Insurers are understandably wary of paying claims for which little or no objective evidence exists and high rates of symptom magnification and malingering exist.  Claimants get frustrated when insurers question their claims because they suffered an injury for which limited diagnostic tests are available.  Both insurers and claimants would be served best if there was a reliable way to differentiate legitimate traumatic brain injury from malingering or symptom magnification.  The question is whether there is such a reliable way to do so.

The good news is that advances in neuroimaging are beginning to differentiate how physically injured brains function versus uninjured brains and brains of persons with psychological conditions.  For example, a July 2015 study published at PLoS ONE described differences in single photon emission computed tomography (“SPECT”) scans between persons suffering from traumatic brain injury versus posttraumatic stress disorder.  The study specifically concluded that “hypoperfusion in the orbitofrontal cortex, temporal poles, and anterior cingulum are consistent with the most frequent findings in the TBI literature” while “increases in the limbic structures, cingulum, basal ganglia, insula, thalamus, prefrontal cortex, and temporal lobes” were noted in subjects with PTSD.  The authors report that SPECT scans may be able “to differentiate TBI from PTSD with sufficient sensitivity, specificity and accuracy to incrementally enhance clinical decision-making.” 

The bad news is that we are just at the cusp of the neuroimaging revolution.  This means doctors cannot simply order a SPECT scan (or any other imaging study) and state to a reasonable degree of medical certainty whether a particular patient is suffering from a particular condition based on the results of the scan.  More research will be needed before imaging studies can be relied on to differentiate between the fact of injury and the type of injury being claimed.  Though the news on the neuroimaging front is encouraging, until it becomes medically accepted as a diagnostic tool we will have to rely on clinical examination and testing to assess whether a particular patient is suffering from a TBI, a psychological injury, or is attempting to deceive us.

So can we determine if a claimant is trying to deceive us with clinical examination and testing?  First, it is useful to define exactly what malingering is.  According to the American Psychiatric Association, malingering is “the intentional production of false or grossly exaggerated physical or psychological symptoms motivated by external incentives…”  In the case of malingering in a personal injury claim, the external incentive is to obtain compensation from the tort system.  It is also useful to know that the vast majority of mild traumatic brain injury resolves within 6 months.  Most mild traumatic brain injuries are unremarkable events that are self-limiting and require little active care.  In most cases, a person suffering a mild traumatic brain injury will get better no matter what they do and whether they seek treatment or not.

The symptoms of traumatic brain injury are nonspecific and include memory loss, attention deficits, mood changes, anxiety, and headache.  These symptoms are also present in psychological conditions such as depression and PTSD and are so nonspecific as to be easily feigned.  Fortunately, neuropsychological testing “can identify those who exaggerate or fake with moderately high levels of sensitivity and specificity.”  One of the chief ways of detecting feigners is through the use of tests or indices that measure effort or intentional failure.  These include the Test of Memory Malingering (“TOMM”), the Word Memory Test, the Computerized Assessment of Response Bias, the Portland Digit Recognition Test, and the Victoria Symptom Validity Test.  For example, the TOMM has been found to have a 100% positive predictive power (the likelihood that a person has the condition when a test detects the condition) and a 90% negative predictive power (probability that a person does not have the condition when a test does not detect the condition).  Researchers noted that “these statistics indicate that we can be 90% confident that a person gave good effort when he or she scored above the suggested cutoff value (for suboptimal performance).  On the other hand, when a participant scored below the cutoff, we can have 100% confidence that he or she performed suboptimally.” 

Interested in learning more about traumatic brain injuries and how to tell legitimate claims from illegitimate ones?  Attend Medical Systems’ Advanced Medical Topics in Civil Litigation Symposium where Dr. Marc Novom and Dr. Brad Grunert will tackle traumatic brain injury from medical and psychological perspectives to give you their insights on how they analyze these claims and what you can do to manage them more effectively.

0 Comments:

log in to comment

Back to Blog
Recent Posts
Archive